

CERTIFICATE

Material Fire Test Certificate

IGNL-9375-05-01C I01 R00

DATE RECEIVED 10/07/2025
DATE OF TEST 29/07/2025
ISSUE DATE 30/07/2025
EXPIRY DATE 06/10/2030

AS ISO 9239.1-2003 Determination of the burning behaviour using a radiant heat source

SPONSOR

Belgotex Floorcoverings (Australia) Pty Ltd
Building 3, Warehouse 8,
161 Manchester Road
Auburn, NSW 2144

TEST BODY

Ignis Labs Pty Ltd
ABN 36 620 256 617
3 Cooper Place
Queanbeyan NSW 2620
Australia
www.ignislabs.com.au
(02) 6111 2909

Test body is the test location

Specimen Name

FinFloor Original

Specimen Description

The client described the specimen as laminated flooring, nominally composed of a high-density fibreboard core with a nominal thickness of 8 mm. The sponsor described its colour as 'Paramount Oak' or dark brown. Its intended end use is for both residential and commercial applications. The testing face is the decorative layer with a transparent protective surface.

The specimen was received as laminate flooring with a fibreboard core, with a measured thickness of 7.78 mm. The specimen is dark brown in colour. The specimens were tested in a floating configuration on Belgotex Aqua Elite underlay, which is a blue foam with blue facings, having a measured thickness of 2.12 mm. The total measured thickness of the specimen was 9.80 mm. The tests were conducted on 7.5 mm fibre cement board.

Ignis Labs was not responsible for the sampling stage. All specimens were sampled by the test sponsor. The test results apply to the specimens as received.

Test Method

Four (4) specimens were tested in accordance with Australia Standard 9239.1-2003 Reaction to fire tests for floorings, Part 1: Determination of the burning behaviour using a radiant heat source carried out in accordance with EN ISO 9239-1. Testing with both direction each confirmed that testing with the production direction yielded the least favourable results. As such, specimens 1 to 3 were tested to extinction with the production direction and specimen 4 was tested against the production direction.

Observations

All specimens exhibited similar results and ignited during the test. Specimens 1, 2, and 3 ignited at 150, 152, and 144 seconds into the test respectively, with bubbling observed at 135, 140, and 142 seconds, and tearing at 205, 222, and 198 seconds. The flame front stopped at measured distances of 338 mm at 203 seconds, 308 mm at 3634 seconds, and 340 mm at 1885 seconds and extinguished at 2805, 3634, and 3431 seconds respectively. After the test, the burnt sections showed cracking and bulging and were ultimately reduced to ash.

Calculations

Parameters	Unit	Specimen			
		1	2	3	4
Specimen number					
Test duration	min	48.42	62.22	58.63	43.93
Time to reach 50mm	s	635	591	685	461
Flameout time	min	48.42	62.22	58.63	43.93
Flame spread at 10 min	mm	58	62	55	72
Flame spread at 20 min	mm	233	210	206	158
Flame spread at 30 min	mm	338	308	340	242
Flame spread at flameout	mm	338	308	340	250
Maximum light attenuation	%	23.86	22.82	24.70	8.54
HF-10	kW/m ²	11.00	11.00	11.00	11.00
HF-20	kW/m ²	8.80	9.27	9.35	10.27
HF-30	kW/m ²	6.65	7.27	6.60	8.62
CHF	kW/m ²	6.65	7.27	6.60	8.45
Critical heat flux	kW/m ²	6.6	7.2	6.6	8.4
Smoke obscuration integration	%xmin	164.80	212.77	134.80	150.32

Result

Parameters	Unit	Results
Average flame spread	mm	328.67
Average critical heat flux	kW/m ²	6.8
Average smoke obscuration integration	%xmin	170.79

Test Supervisor

Darren Laker

Technical Lead

Jessica Ying

NATA Accredited Laboratory
Number: 20534 Site number: 24604
Accredited for compliance with
ISO/IEC 17025 - Testing

Version: IGNL-QF-046-Issue 02 Revision 01

Disclaimer These test results relate only to the behaviour of the test specimens of the material under the particular conditions of the test, and they are not intended to be the sole criterion for assessing the potential fire hazard of the material in use. The results of these fire tests may be used to directly assess fire hazard, but it should be recognized that a single test method will not provide a full assessment of fire hazard under all fire conditions.

The information contained in this document is provided for the sole use of the recipient and no reliance should be placed on the information by any other person. In the event that the information is disclosed or furnished to any other person, the Ignis Labs Pty Ltd accepts no liability for any loss or damage incurred by that person whatsoever as a result of using the information.

Copyright © All rights reserved. No part of the content of this document may be reproduced, published, transmitted or adapted in any form or by any means without the written permission of the Ignis Labs Pty Ltd.