

CERTIFICATE

Material Fire Test Certificate

IGNL-9375-05-02C I01 R00

DATE RECEIVED 10.07.2025
DATE OF TEST 24.07.2025
30.07.2025
29.08.2025
ISSUE DATE 07.10.2025
EXPIRY DATE 06.10.2030

AS ISO 9239.1-2003 Determination of the burning behaviour using a radiant heat source

SPONSOR

Belgotex Floorcoverings (Australia) Pty Ltd
Building 3, Warehouse 8,
161 Manchester Road
Auburn, NSW 2144

TEST BODY

Ignis Labs Pty Ltd
ABN 36 620 256 617
3 Cooper Place
Queanbeyan NSW 2620
Australia
www.ignislabs.com.au
(02) 6111 2909

Test body is the test location

Specimen Name

FinFloor Supreme

Specimen Description

The sponsor described the specimen as laminate flooring. It is composed of a high-density fibreboard core and has a nominal thickness of 8 mm. The sponsor described its colour as 'nantes chevron' (dark brown) and has an end use in residential and commercial applications. The testing face contains a decorative layer, and the specimen is to be tested on a foam underlay. The specimen was received as laminate flooring with a fibreboard core and was tested on Belgotex Aqua Elite underlay. The flooring was brown in colour and had an average measured thickness of 7.82 mm. The underlay was blue in colour and had an average measured thickness of 2.10 mm. The specimens had an average measured total thickness of 9.94 mm and were tested on a 7.5 mm fibre cement substrate.

Ignis Labs was not responsible for the sampling stage. All specimens were sampled by the test sponsor. The test results apply to the specimens as received.

Test Method

Four (4) specimens were tested in accordance with Australia Standard 9239.1-2003 Reaction to fire tests for floorings, Part 1: Determination of the burning behaviour using a radiant heat source carried out in accordance with EN ISO 9239-1. Testing with both direction confirmed that testing against production direction yielded the least favourable results. As such, specimens 2 to 4 were tested to extinguishment against production direction and specimen 3 was tested with the production direction.

Observations

The tested specimens exhibited similar results. Smoke was observed prior to ignition, and ignition occurred at 138, 131, 153, and 131 seconds into the test for specimen 1 to 4 respectively. Flameout occurred at 1703, 2802, 2203, and 2238 seconds into the test, with the main flame front stopping at the first joint in specimens 2 to 4. After the test, the specimens were charred black and cracked where flaming had occurred. Charring was also observed up to 300 mm from the zero point.

Calculations

Parameters	Unit	Specimen				
		With the production direction	1	2	3	4
Specimen number						
Test duration	min	28.82	46.88	36.88	39.20	
Time to reach 50mm	s	887	660	664	530	
Flameout time	min	28.82	46.88	36.88	39.20	
Flame spread at 10 min	mm	30	60	60	60	
Flame spread at 20 min	mm	90	150	120	130	
Flame spread at 30 min	mm	90	220	220	220	
Flame spread at flameout	mm	90	220	220	220	
Maximum light attenuation	%	62.59	30.30	32.63	26.90	
HF-10	kW/m ²	11.00	11.00	11.00	11.00	
HF-20	kW/m ²	11.00	10.43	11.00	10.81	
HF-30	kW/m ²	11.00	9.07	9.07	9.07	
CHF	kW/m ²	11.00	9.07	9.07	9.07	
Critical heat flux	kW/m ²	11.0	9.0	9.0	9.0	
Smoke obscuration integration	%xmin	152.89	394.34	143.30	150.83	

Result

Parameters	Unit	Results
Average flame spread	mm	220
Average critical heat flux	kW/m ²	9.0
Average smoke obscuration integration	%xmin	229.49

NATA Accredited Laboratory
Number: 20534 Site number: 24604
Accredited for compliance with
ISO/IEC 17025 - Testing

Test Supervisor

Darren Laker

Technical Lead

Jessica Ying

Version: IGL-QF-046-Issue 02 Revision 01

Disclaimer These test results relate only to the behaviour of the test specimens of the material under the particular conditions of the test, and they are not intended to be the sole criterion for assessing the potential fire hazard of the material in use. The results of these fire tests may be used to directly assess fire hazard, but it should be recognized that a single test method will not provide a full assessment of fire hazard under all fire conditions.

The information contained in this document is provided for the sole use of the recipient and no reliance should be placed on the information by any other person. In the event that the information is disclosed or furnished to any other person, the Ignis Labs Pty Ltd accepts no liability for any loss or damage incurred by that person whatsoever as a result of using the information.

Copyright © All rights reserved. No part of the content of this document may be reproduced, published, transmitted or adapted in any form or by any means without the written permission of the Ignis Labs Pty Ltd.